

 Introduction to Mobile Ad hoc networks
(MANETs)

 Routing in MANETs

 Virtual Backbone Routing

 Kelpi: Algorithm and implementation

 Conclusions

Networking wireless hosts:

 Cellular Networks
 Infrastructure dependent

 High setup costs

 Large setup time

 Reliable

Some motivating applications:
 Casual conferencing

 low set-up time, cost preferred

 Battlefield operations/disaster relief
 infrastructure unavailable

 Personal area networking
 devices around the home/office

Cellular networks are not preferred.

 mobile hosts

 multi-hop routes between nodes

 may not use infrastructure

Source: it644 course material

 Prof. Sridhar Iyer

 Dynamic topology

 links formed and broken with mobility

 Possibly uni-directional links

 Constrained resources

 battery power

 wireless transmitter range

 Network partitions

A
B A

B

Source: it644 course material

 Prof. Sridhar Iyer

To find and maintain routes between nodes in a
dynamic topology with possibly uni-directional
links, using minimum resources.

 Routing is through source routing
◦ complete path with each packet

 Route discovery
◦ flooding RREQ till a node replies

 Route maintainance
◦ explicit link breakage notification

Mobility of a node can break routes passing
through it.

 Modified Distance Vector protocol
◦ periodic DV updates

 High frequency of DV updates
◦ topology is dynamic

 Does not scale well
◦ size of DV updates increase

◦ high routing overheads

◦ Most ad hoc routing protocols are
combinations/variations of DSR/DSDV

◦ Mobility in DSR causes short-lived routes

◦ DSDV is not scalable

The dynamic virtual backbone is a concept wherein a
set of relatively stable routes are formed despite
nodes being mobile.

◦ a possible way is to abstract mobility through
aggregation

 a dynamic group of nodes by preventing some
information from moving out of the group, keeps
mobility transparent to the rest of the network.

10

0 1 8 6 5 4 3 2 7

9 16 15 14 13 12 11 17

19 18 25 24 23 22 21 20 26

28 27 34 33 32 31 30 29 35

37 36 43 42 41 40 39 38 44

Node

Router

S
D

(x0, y0)

(xl, yl)

Cell

Operational

 Area

◦ Kelpi: a MANET routing algorithm based on the
concept of Virtual Backbone Routing (VBR).

◦ Assumptions:

 nodes equipped with positioning system, say a GPS
receiver

 nodes capable of multi-level transmission

 mobility scenario

 upto vehicular speeds of mobility

 area of a few kilometres

 fairly dense network

 typical battlefield/disaster relief scenario

◦ Area of operation divided into square geographical
cells

◦ In each cell one node is a router

◦ Inter-cell communication is through routers

 Routers transmit at a higher transmission power

◦ Nodes communicate through their cell routers

10

0 1 8 6 5 4 3 2 7

9 16 15 14 13 12 11 17

19 18 25 24 23 22 21 20 26

28 27 34 33 32 31 30 29 35

37 36 43 42 41 40 39 38 44

Node

Router

S
D

(x0, y0)

(xl, yl)

Cell

Operational

 Area

◦ Nodes aggregated by position

 geographically defined cells

◦ Each group has a router

 any node can be a router

 router responds to a Cell Router Address (CRA)

 before moving cells a router hands off routing
information

CRA(1) CRA(2)

0 1 2

Use of Cell Router Address and cells to implement VBR in Kelpi

1.Area of operation is known

2..Initialization parameters: bounding

 co-ordinates and maxTxPower.

(x0, y0)

(xl, yl)

Initialization: Node comes on:

1.Node calculates grid

10

0 1 8 6 5 4 3 2 7

9 16 15 14 13 12 11 17

19 18 25 24 23 22 21 20 26

28 27 34 33 32 31 30 29 35

37 36 43 42 41 40 39 38 44

2.Node sends HI

3. Does not receive reply and

 declares itself router of cell 21

Another node comes on:

1.Node sends HI

2 Receives reply from router

10

0 1 8 6 5 4 3 2 7

9 16 15 14 13 12 11 17

19 18 25 24 23 22 21 20 26

28 27 34 33 32 31 30 29 35

37 36 43 42 41 40 39 38 44

◦ Data structures at router:

 node_list, routing_table, forwarding_pointers

◦ The new router sends a RH (Router Here)
message

 prevents multiple routers in a cell

◦ starts listening on the CRA

◦ starts sending/receiving DV updates to/from
neighbouring routers

 <cell, distance, sequence_no>

◦ receives HI messages and enters sending node
into node_list

◦ node S wants to send to node D

 S must know D’s cell

◦ S discovers D’s cell by sending a FIND_CELL packet
to its router

◦ Routers flood FIND_CELL among themselves

◦ A router with the node in its node_list replies
directly to S

10

0 1 8 6 5 4 3 2 7

9 16 15 14 13 12 11 17

19 18 25 24 23 22 21 20 26

28 27 34 33 32 31 30 29 35

37 36 43 42 41 40 39 38 44

Node

Router

S
D

(x0, y0)

(xl, yl)

Cell

Operational

 Area

◦ Node detects it is in a new cell

 sends BYE to previous cell’s router

 sends HI to new cell’s router

 sends MOVED_CELL to nodes communicating with it

◦ Router detects it is approaching a new cell

 initiates router handoff

 appoints new router

 messages: RTR_MOVE, RTR_MOVE_ACK, RTR_HANDOFF

 sends routing_table, sequence numbers, node_list to new router

 becomes a node

 ns-2 network simulator used for
implementing Kelpi
◦ open source, used widely in MANET research

 critical modifications to ns-2
◦ packet headers

◦ physical layer code for multi-powered transmitter

◦ introduction of new routing agent: Kelpi

void KelpiAgent::node_receives_packet(Packet* p)

{

 struct hdr_cmn* ch = HDR_CMN(p);

 struct hdr_ip* iph = HDR_IP(p);

 int src_ip = iph->saddr();

 int dst_ip = iph->daddr();

 double now = Scheduler::instance().clock();

 // if this node originates the packet

 if(src_ip == node_address && ch->num_forwards() == 0)

 {

 printf("ch size: %d ", ch->size());

 ch->size() += IP_HDR_LEN;

 printf("%d \n", ch->size());

 iph->ttl_ = 32; // change to num. cells in diagonal?

 }

.

.

.

 if ((node_cache[dst_ip] != NULL) && (node_cache[dst_ip]->time_last_accessed >

0.1) && ((now - node_cache[dst_ip]->time_last_accessed) < CACHE_STALE))

 {

 if (node_cache[dst_ip]->cell != current_cell)

 forward_to_router(p, node_cache[dst_ip]->cell);

 else

 {

 // send packet directly to node

 ch->next_hop_ = dst_ip;

 ch->addr_type_ = NS_AF_INET;

 ch->txPower = nodeTxPower;

 ch->src_cell = current_cell;

 ch->dst_cell = current_cell;

Excerpt from events.cc

Scheduler &s = Scheduler::instance();

 printf (" Direct send to %d from %d at

%lf\n",dst_ip,src_ip, s.clock());

 target_->recv(p,(Handler*)0);

 }

 //update cache

 node_cache[dst_ip]->time_last_accessed = now;

 }

 else

 {

 // buffer the packet

 rtQ.enque(p);

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(ant) Antenna/OmniAntenna ;# Antenna type

set val(ll) LL ;# Link layer type

set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type

set val(ifqlen) 50 ;# max packet in ifq

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(rp) Kelpi ;# ad-hoc routing protocol

set val(nn) 3 ;# number of mobilenodes

set val(txPower) 0.002w ;# txPower

set ns_ [new Simulator]

.

.

.

Provide initial (X,Y, for now Z=0) co-ordinates for node_(0) and node_(1)

$node_(0) set X_ 5.0

$node_(0) set Y_ 5.0

$node_(0) set Z_ 0.0

.

.

Move

$ns_ at 1.0 "$node_(0) setdest 30.0 5.0 10.0"

$ns_ at 6.0 "$node_(1) setdest 25.0 25.0 1.0"

TCP connections between node_(0) and node_(1)

set tcp [new Agent/TCP]

#$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(2) $sink

$ns_ attach-agent $node_(1) $tcp

$ns_ connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at 2.0 "$ftp start"

$ns_ at 3.0 "$ftp stop"

Excerpts from tst.tcl

s 2.003625883 _2_ MAC --- 7 tcp 1052 [a3 1 2 800] ------- [2:0 1:0 32 0] [0 0] 0 0

r 2.007833936 _1_ MAC --- 7 tcp 1000 [a3 1 2 800] ------- [2:0 1:0 32 0] [0 0] 1 0

s 2.007843936 _1_ MAC --- 0 MAC 38 [0 2 0 0]

r 2.007858936 _1_ AGT --- 7 tcp 1000 [a3 1 2 800] ------- [2:0 1:0 32 0] [0 0] 1 0

s 2.007858936 _1_ AGT --- 10 ack 40 [0 0 0 0] ------- [1:0 2:0 32 0] [0 0] 0 0

r 2.007858936 _1_ RTR --- 10 ack 40 [0 0 0 0] ------- [1:0 2:0 32 0] [0 0] 0 0

s 2.007858936 _1_ RTR --- 11 message 48 [0 0 0 0] ------- [1:255 0:255 32 0]

r 2.007995988 _2_ MAC --- 0 MAC 38 [0 2 0 0]

s 2.008505936 _1_ MAC --- 0 MAC 44 [2df 0 1 0]

r 2.008681983 _0_ MAC --- 0 MAC 44 [2df 0 1 0]

s 2.008691983 _0_ MAC --- 0 MAC 38 [23d 1 0 0]

r 2.008844030 _1_ MAC --- 0 MAC 38 [23d 1 0 0]

s 2.008894030 _1_ MAC --- 11 message 100 [a3 0 1 800] ------- [1:255 0:255 32 0]

r 2.009294077 _0_ MAC --- 11 message 48 [a3 0 1 800] ------- [1:255 0:255 32 0]

s 2.009304077 _0_ MAC --- 0 MAC 38 [0 1 0 0]

r 2.009319077 _0_ RTR --- 11 message 48 [a3 0 1 800] ------- [1:255 0:255 32 0]

s 2.009319077 _0_ RTR --- 11 message 48 [a3 0 1 800] ------- [0:255 -1:255 31 0]

Excerpt from wireless.tr

◦ following functionality has been successfully
implemented

 topology related functions

 cell discovery

 destination cell caching

 packet buffering

 packet forwarding

 router hand-offs

◦ these have been validated for small test cases

◦ Advantages

 designed to provide stable routes

 increased throughput due to two levels of
transmission

 reduced flooding overhead

◦ Disadvantages

 positioning system required

 muliple levels of transmission preferred

 routers may be overloaded in a dense network

 Remove requirement of GPS from Kelpi

 Generalize concept of Virtual Backbone
Routing to other existing routing
algorithms

